
Stationary quantum Markov process for the Wigner function on a lattice phase space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 14253

(http://iopscience.iop.org/1751-8121/40/47/015)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/47
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 14253–14262 doi:10.1088/1751-8113/40/47/015

Stationary quantum Markov process for the Wigner
function on a lattice phase space

T Hashimoto, M Horibe and A Hayashi

Department of Applied Physics, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan

E-mail: d901005@icpc00.icpc.fukui-u.ac.jp, horibe@quantum.apphy.fukui-u.ac.jp and
hayashi@soliton.apphy.fukui-u.ac.jp

Received 23 June 2007, in final form 25 September 2007
Published 6 November 2007
Online at stacks.iop.org/JPhysA/40/14253

Abstract
As a stochastic model for quantum mechanics we present a stationary quantum
Markov process for the time evolution of the Wigner function on a lattice phase
space ZN × ZN with N odd. By introducing a phase factor extension to the
phase space, each particle can be treated independently. This is an improvement
on earlier methods that require the whole distribution function to determine the
evolution of a constituent particle. The process has branching and vanishing
points, though a finite time interval can be maintained between the branchings.
The procedure to perform a simulation using the process is presented.

PACS numbers: 03.65.−w, 02.50.Ey, 02.50.Ga, 02.70.Ss

1. Introduction

Various studies of quantum mechanics have been made by using trajectories. For example, in
Feynman’s path integral method, the transition amplitude between the initial and final points
is calculated by adding all the phase factors determined from the trajectories connecting these
points [1]. In this case, the trajectories are interfering alternatives and not those of observed
particles. The method proposed by Bohm is another example. In this method, the trajectories
are treated as if they were observed and are calculated deterministically [2]. These methods
give alternative formulations of quantum mechanics.

The stochastic approach is another method. It is used not only for the formulation of
quantum mechanics, but also for practical calculations. The use of a stochastic method for
practical calculations is generally called the quantum Monte Carlo method (QMC) and is
widely used in the simulation of quantum systems. Typical algorithms in the QMC are the
random walk Monte Carlo method (RWMC), the diffusion Monte Carlo method (DMC) and the
path integral Monte Carlo method (PIMC). These methods are efficient ways of determining
the wavefunction and energy of a ground state [3, 4]. They are based on the formal analogy
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that the Schrödinger equation becomes the diffusion equation when t is substituted by an
imaginary time iτ .

A solution of the diffusion equation can be constructed using Brownian motion. We can
generate sample paths of Brownian particles by a random number generator and can follow
the paths independently as Brownian motion is a stationary Markov process, which means
that the diffusion equation can be solved by a stochastic method using a random number
generator. Many studies have been conducted on the diffusion equation and Brownian motion.
It is known that a stochastic estimation is generally more efficient than direct calculations
when the system has many degrees of freedom. In direct methods, the amount of calculation
required generally increases exponentially with the number of degrees of freedom D [5].
On the other hand, for stochastic methods the amount of calculation is of order D for one trial,
though the estimated error is of order 1/

√
n where n is the number of trials. Very naively,

the Schrödinger equation is a diffusion equation along an imaginary time axis. However,
the quantum stationary Markov process for the Schrödinger equation, which corresponds to
Brownian motion for the diffusion equation, has not yet been established. Formulating an
analogous process to Brownian motion in quantum mechanics would be useful for estimating
the time development of wavefunctions, especially in higher degrees of freedom.

Because of the probabilistic nature of quantum mechanics, several stochastic formulations
of quantum mechanics have been investigated [6, 7]. A typical example of such a stochastic
process was formulated by Nelson in 1966 [6]. In this method, the behavior of the constituent
particles is determined by a stochastic differential equation and their distribution function
coincides with the absolute square of the wavefunction. In this sense, the trajectories in
this method are those of the observed particles. We can apply this method to estimate the
tunneling time by making simulations of the trajectories [8]. However, the drift term in the
stochastic equation is calculated from the wavefunction, and hence the Schrödinger equation
must be solved to construct the process. A general method to construct a stochastic process
without solving the Schrödinger equation was developed by Guerra and Marra [9]. In their
method, the total distribution of particles is required to determine the next step of a constituent
particle, though the obtained process is a Markov process. It is possible to determine the
time evolution of all particles simultaneously, but each individual particle cannot be treated
independently. These methods treat the distribution function directly, i.e. the absolute square
of a wavefunction.

A way to avoid this difficulty is to search for a stochastic process for the time evolution
equations which are equivalent to the Schrödinger equation. One such equation is the quantum
Liouville equation for the Wigner function. In this paper, we discuss a stationary quantum
stochastic process for the Wigner function in a lattice phase space. A similar approach
was considered by Cohendet et al [10]. They constructed the Wigner function on a lattice
constituting of an odd number of lattice points, and found a background quantum Markov
process.

The Wigner function is defined by Wigner as

ρ(q, p) = 1

πh̄

∫ ∞

−∞
dr e2ipr/h̄ψ∗(q + r)ψ(q − r) (1)

in the phase space, where ψ(q) is a wavefunction [11, 12]. The Wigner function gives the
density distribution in the configuration space if it is integrated along the momentum direction:

∫ +∞

−∞
ρ(q, p) dp = |ψ(q)|2, (2)
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and gives the density distribution in the momentum space if integrated along the configuration
direction: ∫ +∞

−∞
ρ(q, p) dq = |ψ̃(p)|2. (3)

This property is the so-called marginality of the Wigner function. In this sense, the Wigner
function can be regarded as a kind of distribution function in the phase space and plays an
important role in quantum mechanics, especially in the quantum-classical correspondence.
However, the value of the Wigner function can be negative, so that it is not a distribution
function itself.

Cohendet et al regarded a lattice with odd N lattice points as a cyclic group ZN of order N
and constructed a Wigner function in the lattice phase space ZN × ZN , i.e. the direct product
of ZN and its dual (∼=ZN ). The Wigner function can also be negative on a finite lattice, but
the value is bounded. They extended the phase space ZN × ZN by a dichotomic variable
σ of value ±1 and considered a new function on the extended space adding a constant to
the Wigner function. The function is normalized and positive as the original function is
bounded, so it can be regarded as a distribution function of particles in the new space. They
derived the time evolution equation for the distribution function from the quantum Liouville
equation, which determines the time evolution of the Wigner function, and constructed the
background stochastic process of the particles using the Guerra–Marra method. Although
the obtained process has a Markov property, the whole distribution function is required to
determine the evolution of a constituent particle. The transition probability is time dependent
and not stationary.

In this paper we introduce a stationary Markov process that enables us to treat all particles
independently, by extending the phase space by a phase factor U(1) on an odd lattice. The
process has branching and vanishing points and a finite time interval can be maintained between
the branchings.

2. The stationary quantum Markov process for the Wigner function

2.1. Wigner function on a lattice

Let N be an odd number. We define N × N phase and shift matrices Q,P as

Q = (Qnm) ≡ (ωnδ̄n,m)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω
N
2 − 1

2

·
ω

1
ω−1

·
ω− N

2 + 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

P = (Pnm) ≡ (δ̄n+1,m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 ·

· ·
1 0

1 ·
· ·

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)
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where m, n ∈ ZN and are labeled from (N − 1)/2 to −(N − 1)/2 with step-1, δ̄ is the
Kronecker delta function modulo N, ω is a primitive Nth root of unity, e.g. exp(2π i/N). The
matrices Q,P correspond to the phase and shift operators

eiaq̂ , eiap̂, (6)

respectively, in continuous spacetime, where a is a lattice constant. The Weyl matrices
W(m, n) and Fano matrices �(m, n) are defined as

W(m, n) = ω−2mnQ2nP −2m, (7)

�(m, n) = W(m, n)T , (8)

where T is a matrix given by

T = (Tnm) ≡ (δ̄n+m,0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
·

·
1

·
·

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The Weyl matrices W(m, n) can also be written as

W(m, n) = ω2mnP −2mQ2n = P −mQ2nP −m = QnP −2mQn. (10)

The N2 Weyl matrices and Fano matrices are both complete and orthonormal in the trace
norm:

Tr[W †(m, n)W(m, n)] = Nδm,n,

Tr[�†(m, n)�(m, n)] = Nδm,n, (11)

W †(m, n) = W(−m,−n), �†(m, n) = �(m, n),

so that arbitrary matrices can be expressed as a linear combination of these matrices. We call
the coefficients that appear in the Weyl and Fano expansions the Weyl and Fano coefficients,
respectively.

In the continuous case, the Weyl operator is defined as

Wc(q, p) = 2e−2ipq/h̄Q2p
c P −2q

c = 2e2ipq/h̄P −2q
c Q2p

c

= 2Qp
c P −2q

c Qp
c = 2P −q

c Q2p
c P −q

c (12)

where

Qc = eiq̂ , Pc = eip̂. (13)

The Wigner function is written as

ρc(q, p) = 1

2πh̄
Tr[ρWc(q, p)Tc] (14)

where the operator Tc is given by

Tc ≡
∫ ∞

−∞
dq|−q〉〈q|. (15)

The Wigner function on a lattice is defined in an analogous way to the continuous case:

ρ(m, n) = 1

N
Tr[ρW(m, n)T ] = 1

N
Tr[ρ�(m, n)]. (16)

It is easily seen that this definition satisfies the marginality condition on the lattice.
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2.2. Quantum Liouville equation for the Wigner function

Let H̃ (m, n) be the Weyl coefficients of the Hamiltonian,

H =
∑
m,n

W(m, n)H̃ (m, n), (17)

and ρ(m, n) be the Fano coefficients of the density matrix, i.e. the Winger function,

ρ =
∑
m,n

�(m, n)ρ(m, n). (18)

The quantum Liouville equation

ih̄
d

dt
ρ = [H, ρ] (19)

can be written using these coefficients as

d

dt
ρ(m, n) = 1

ih̄

∑
m′,n′

{
H̃ (m − m′, n − n′)ω−2(mn′−nm′)

−H̃ ∗(m − m′, n − n′)ω2(mn′−nm′)}ρ(m′, n′). (20)

We modify the equation as follows for later convenience. We perform a polar
decomposition of the Weyl coefficients of the Hamiltonian:

H̃ (m, n) = h̃(m, n)ωθ(m,n), (21)

where θ(0, 0) is 0 from the Hermiticity of the Hamiltonian. The time evolution equation for
the Wigner function (20) can be rewritten by this decomposition as follows:

d

dt
ρ(m, n) = 1

h̄

∑
m′,n′

h̃(m − m′, n − n′)

× {
ω−2(mn′−nm′)+θ(m−m′,n−n′)−N/4 + ω2(mn′−nm′)−θ(m−m′,n−n′)+N/4

}
ρ(m′, n′).

(22)

The term on the right-hand side equals zero when m = m′, n = n′, so that it can be omitted in
the sum.

2.3. Generator of the Markov process and time evolution equation for ϕ

We extend the phase space ZN × ZN with the phase factor U(1) and consider a non negative
function ϕ(α,m, n) on U(1) × ZN × ZN that has the following relation with the Wigner
function:

ρ(m, n) =
∫

dα eiαϕ(α,m, n). (23)

Since the Wigner function is bounded in modulus by 1/N on a lattice

− 1

N
� ρ(m, n) � 1

N
,

the function ϕ(α,m, n) exists, although it is not uniquely determined. We can take

ϕ(α,m, n) = ϕ(−α,m, n) (24)

without loss of generality as ρ(m, n) is real.
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We consider the following time evolution equation for ϕ(α,m, n) within a short time
period �t :

ϕ(α,m, n; t + �t) =
∫

dα′ ∑
m′,n′

M�t(α,m, n;α′,m′, n′)ϕ(α′,m′, n′; t) (25)

where M�t(α,m, n;α′,m′, n′) is given by

M�t(α,m, n;α′,m′, n′) = (1 − D�t)δ(α − f�t (α
′))δm,m′δn,n′ +

D�t

2|h̃| h̃(m − m′, n − n′)

×{δ(α − α′ − 2π(−2(mn′ − nm′) + θ(m − m′, n − n′) − N/4)/N)

+ δ(α − α′ − 2π(+2(mn′ − nm′) − θ(m − m′, n − n′) + N/4)/N)}, (26)

with

|h̃| ≡
∑
m,n

h̃(m, n). (27)

We assume the function f�t (α) in this equation satisfies

(1 − D�t) cos f�t (α) = cos α, (28)

lim
�t→0

f�t (α) = α. (29)

The definition of M�t(α,m, n;α′,m′, n′) shows that particles with ratio D�t move to
other phase points with probability h̃(m − m′, n − n′)/|h| within �t . On the other hand,
other particles stay at the same phase points and change their phase from α to f�t (α)

deterministically. This means that M�t represents the time evolution of a Markov process for
ϕ(α,m, n).

2.4. Time evolution of the Wigner function

We consider the time evolution of the Wigner function ρ(m, n) when ϕ(α,m, n) evolves
following equation (25):

ρ(m, n; t + �t) =
∫

dα

∫
dα′ ∑

m′,n′
eiαM�t(α,m, n;α′,m′, n′)ϕ(α′,m′, n′; t)

= ρ(m, n; t) +
D�t

2|h̃|
∫

dα′ ∑
m′,n′

h̃(m − m′, n − n′)

× (eiα′
ω−2(mn′−nm′)+θ(m−m′,n−n′)−N/4

+ eiα′
ω+2(mn′−nm′)−θ(m−m′,n−n′)+N/4)ϕ(α′,m′, n′; t). (30)

We have
1

�t
{ρ(m, n; t + �t) − ρ(m, n; t)} = D

2|h̃|
∑
m′,n′

h̃(m − m′, n − n′)

× (ω−2(mn′−nm′)+θ(m−m′,n−n′)−N/4 + ω+2(mn′−nm′)−θ(m−m′,n−n′)+N/4)

×
∫

dα′ eiα′
ϕ(α′,m′, n′; t) (31)

and in the �t → 0 limit
d

dt
ρ(m, n) = D

2|h̃|i
∑
m′,n′

h̃(m − m′, n − n′)

× (ω−2(mn′−nm′)+θ(m−m′,n−n′)−N/4 + ω+2(mn′−nm′)−θ(m−m′,n−n′)+N/4)ρ(m′, n′).
(32)
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This shows that if ϕ(α,m, n) evolves following the time evolution equation (25) and we
take

D/2|h̃| = 1/h̄, (33)

the function ρ(m, n) obtained from the distribution function ϕ(α,m, n) satisfies the quantum
Liouville equation for the Wigner function.

2.5. Generator of the Markov process for ϕ

The generator of a Markov process A(α,m, n;α′,m′, n′) is generally defined by

A(α,m, n;α′,m′, n′) ≡ lim
�t→0

M�t − I

�t
. (34)

The generator corresponding to M�t(α,m, n;α′,m′, n′) is given by

A(α,m, n;α′,m′, n′) = D

tan α′ δ
′(α − α′)δm,m′δn,n′

−Dδ(α − α′)δm,m′δn,n′ +
D

2|h̃| h̃(m − m′, n − n′)

×{δ(α − α′ − 2π(−2(mn′ − nm′) + θ(m − m′, n − n′) − N/4)/N)

+ δ(α − α′ − 2π(+2(mn′ − nm′) − θ(m − m′, n − n′) + N/4)/N)}. (35)

This generator is singular at α = 0, π . These singularities come from the fact that when
we set

f�t (α) = α + �α (36)

in equations (28) and equation (29), we have

�t/�α = − 1

D
tan α = 0 (37)

and �t becomes zero at these points. This means we cannot take the time evolution for any
choice of �α at these points. To avoid this difficulty, we have to choose the initial ϕ(α,m, n)

to be zero at α = 0, π and perform branching without changing the contribution to the Wigner
function when a particle reaches these points. For example, a particle which reaches α = 0
can be replaced by two particles at α = +π/3 and α = −π/3.

In the limit �t → 0, the time evolution equation for ϕ(α,m, n) satisfies

ϕ̇(α,m, n) = ∂

∂α

D

tan α
ϕ(α,m, n) − Dϕ(α,m, n)

+
∫

dα′ ∑
m′,n′

D

2|h̃| h̃(m − m′, n − n′)

×{δ(α − α′ − 2π(−2(mn′ − nm′) + θ(m − m′, n − n′) − N/4)/N)

+ δ(α − α′ − 2π(+2(mn′ − nm′) − θ(m − m′, n − n′) + N/4)/N)}
×ϕ(α′,m′, n′). (38)

The quantum Liouville equation for the Wigner function ρ(m, n) can also be derived
directly from this equation. We observe that equation (38) reduces to equation (22) if the part

∂

∂α

D

tan α
ϕ(α,m, n) − Dϕ(α,m, n) (39)
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vanishes after the integration with respect to α multiplying eiα . Paying attention to
ϕ(α) = ϕ(−α), the integration∫ 2π

0
eiα ∂

∂α

1

tan α
ϕ(α) dα

becomes

2
∫ π

0
cos α

∂

∂α

1

tan α
ϕ(α) dα = 2[sin αϕ(α)]π0 − 2

∫ π

0

∂ cos α

∂α

1

tan α
ϕ(α) dα

= 2
∫ π

0
cos αϕ(α) dα =

∫ 2π

0
eiαϕ(α) dα (40)

and equation (22) holds.

3. Construction procedure

In the following, we summarize the procedure to determine the time evolution of the Wigner
function from the Markov process of particles with distribution function ϕ(α,m, n).

3.1. Preparation

(1) Prepare an additional space U(1) on each phase-space point (m, n).
(2) Calculate the Wigner function from the initial wavefunction.
(3) Expand the Wigner function into the distribution function and make an appropriate choice

of ϕ(α,m, n).
(4) Perform the Weyl expansion of the Hamiltonian and calculate the Weyl coefficients

H̃ (m, n).
(5) Perform the polar decomposition of H̃ (m, n) and calculate θ(m, n).

3.2. Rules of the process

(1) Particles of ratio D�t move to other phase points within �t . Others stay at the same
phase point.

(2) The probability P(m, n;m′, n′) for moving from (m′, n′) to (m, n) is determined by

P(m, n;m′, n′) = h̃(m − m′, n − n′)/|h̃|, (41)

with equation (27).
(3) The phase change is deterministic for particles without jumps to other phase points. The

phase is rotated from α to f�t (α).

3.3. Simulation

(1) Prepare an ensemble of particles with the initial distribution function.
(2) Make transitions for each particle independently in the extended phase space following

the probability rule above within a period of time.
(3) For a jump to another phase point, add the phases ω−2(mn′−nm′)+θ(m−m′,n−n′)−N/4 and

ω2(mn′−nm′)−θ(m−m′,n−n′)+N/4 with probability 1/2.
(4) Pull back the particle when it reaches the stopping point α = 0, π with branching.



Stationary quantum Markov process for the Wigner function on a lattice phase space 14261

(5) After performing the process for each particle, integrate the phase part multiplying eiα to
the density distribution function ϕ(α,m, n). The resultant function is the Wigner function
ρ(m, n) under equation (33).

The ensemble must be remade if the number of particles increases.
We show an example for N = 3 just as a clue to applications. When the Hamiltonian and

initial wavefunction are given by

H = Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ , |ψ〉 = 1

2

⎛
⎝ 1√

2
1

⎞
⎠ ,

with

〈Sx〉 = 1, 〈Sy〉 = 〈Sz〉 = 0,

where

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , Sy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠ ,

the Wigner function and an extended distribution function are given by

ρ(m, n) = 1 − √
2

12
, ϕ(α,m, n) =

√
2 − 1

12

(
δ

(
α − 2π

3

)
+ δ

(
α +

2π

3

))
,

for (m, n) = (1, 1), (1, −1), (−1, 1), (−1,−1),

ρ(m, n) = 1 + 2
√

2

12
, ϕ(α,m, n) = 1

12

(
δ
(
α − π

3

)
+ δ

(
α +

π

3

))
,

for (m, n) = (0, 1), (0, −1),

ρ(m, n) = 1/12, ϕ(α,m, n) = 1 + 2
√

2

12

(
δ
(
α − π

3

)
+ δ

(
α +

π

3

))
,

for (m, n) = (1, 0), (−1, 0),

ρ(m, n) = 1/3, ϕ(α,m, n) = 1√
3

(
δ
(
α − π

3

)
+ δ

(
α +

π

3

))
,

for (m, n)=(0, 0). The Weyl coefficients have only two non-zero values, i.e.,

H̃ (0, 1) = i/
√

3, H̃ (0,−1) = −i/
√

3,

hence the stochastic process is simply determined from

P(0, 1) = P(0,−1) = 1/2, θ(0, 1) = θ(0,−1) = 3/2.

4. Summary

If we consider a lattice constituting of N odd lattice points as a cyclic group of order N, the
corresponding phase space is ZN ×ZN . By extending the phase space by a phase factor U(1),
we can construct a stationary Markov process in the space U(1) × ZN × ZN . This process
has the property that multiplying the phase factor to the density distribution function of the
process and integrating the phase part gives a function which satisfies the quantum Liouville
equation for the Wigner function.

There exist branching points at the phase 0, π , but we can maintain a finite time interval
before the branching by making an appropriate choice of the initial condition and the branching



14262 T Hashimoto et al

method. There is no contribution from the distribution at the phase ±π/2. The process does
not need to be continued for particles reaching these points as the stochastic rule is symmetric
around these points and they give no contribution at future times. In this sense, these points can
be treated as vanishing points. The estimation of branching and vanishing ratio is a problem
for future studies.
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